Publications by authors named "J Conradt"

Fisheries worldwide face uncertain futures as climate change manifests in environmental effects of hitherto unseen strengths. Developing climate-ready management strategies traditionally requires a good mechanistic understanding of stock response to climate change in order to build projection models for testing different exploitation levels. Unfortunately, model-based projections of fish stocks are severely limited by large uncertainties in the recruitment process, as the required stock-recruitment relationship is usually not well represented by data.

View Article and Find Full Text PDF

Marine fisheries are increasingly impacted by climate change, affecting species distribution and productivity, and necessitating urgent adaptation efforts. Climate vulnerability assessments (CVA), integrating expert knowledge, are vital for identifying species that could thrive or suffer under changing environmental conditions. This study presents a first CVA for the Western Baltic Sea's fish community, a crucial fishing area for Denmark and Germany.

View Article and Find Full Text PDF

Dexterous manipulation in robotic hands relies on an accurate sense of artificial touch. Here we investigate neuromorphic tactile sensation with an event-based optical tactile sensor combined with spiking neural networks for edge orientation detection. The sensor incorporates an event-based vision system (mini-eDVS) into a low-form factor artificial fingertip (the NeuroTac).

View Article and Find Full Text PDF

Neuromorphic hardware enables fast and power-efficient neural network-based artificial intelligence that is well suited to solving robotic tasks. Neuromorphic algorithms can be further developed following neural computing principles and neural network architectures inspired by biological neural systems. In this Viewpoint, we provide an overview of recent insights from neuroscience that could enhance signal processing in artificial neural networks on chip and unlock innovative applications in robotics and autonomous intelligent systems.

View Article and Find Full Text PDF

Falling down is a serious problem for health and has become one of the major etiologies of accidental death for the elderly living alone. In recent years, many efforts have been paid to fall recognition based on wearable sensors or standard vision sensors. However, the prior methods have the risk of privacy leaks, and almost all these methods are based on video clips, which cannot localize where the falls occurred in long videos.

View Article and Find Full Text PDF