Publications by authors named "J Cnudde"

The glucagon receptor belongs to the B family of G-protein coupled receptors. Little structural information is available about this receptor and its association with glucagon. We used the substituted cysteine accessibility method and three-dimensional molecular modeling based on the gastrointestinal insulinotropic peptide and glucagon-like peptide 1 receptor structures to study the N-terminal domain of this receptor, a central element for ligand binding and specificity.

View Article and Find Full Text PDF

Quantitative analysis of wood anatomical characteristics is usually performed using classical microtomy yielding optical micrographs of stained thin sections. It is time-consuming to obtain high quality cross-sections from microtomy, and sections can be damaged. This approach, therefore, is often impractical for those who need quick acquisition of quantitative data on vessel characteristics in wood.

View Article and Find Full Text PDF

1: We investigated the human vasoactive intestinal polypeptide (VIP) receptors VPAC(1) and VPAC(2) mutated at conserved tyrosine residues in the first transmembrane helix (VPAC(1) receptor Y146A and Y150A and VPAC(2) receptor Y130A and Y134A). 2: [(125)I]-Acetyl-His(1) [D-Phe(2), K(15), R(16), L(27)]-VIP (1-7)/GRF (8-27) (referred to as [(125)I]-VPAC(1) antagonist) labelled VPAC(1) binding sites, that displayed high and low affinities for VIP (IC(50) values and per cent of high affinity binding sites: wild-type, 1 nM (57+/-9%) and 160 nM; Y146A, 30 nM (40+/-8%) and 800 nM; Y150A, 4 nM (27+/-8%) and 300 nM). [R(16)]-VIP behaved as a "super agonist" at both mutated VPAC(1) receptors and the efficacies of VIP analogues modified in positions 1, 3 and 6 were significantly decreased.

View Article and Find Full Text PDF

The vasoactive intestinal peptide receptor VPAC(1) is preferentially coupled to G(alpha s) protein but also increases [Ca(2+)](i) through interaction with G(alpha i)/G(alpha q) protein. We evaluated a panel of full, partial and null agonists for their capability to stimulate adenylate cyclase activity in both intact cells and membrane and [Ca(2+)](i) in intact cells transfected with the reporter gene aequorin. In intact cells, the agonists efficacy for cAMP and calcium increase were well, but not linearly correlated: VPAC(1) receptors activated G(alpha s) protein more efficiently but with the same pharmacological profile as the other G proteins.

View Article and Find Full Text PDF

Ro 25-1553 is a cyclic VIP derivative with a high affinity for the VPAC(2) receptor subtype. Our goal was to identify the modifications that support its selectivity for VPAC(2) receptors, and to develop a VIP or Ro 25-1553 analog behaving as a high affinity, VPAC(2) selective antagonist. The selectivity of Ro 25-1553 for the human receptor was supported mainly by the acetylation of the amino-terminus, by the introduction of a lysine residue in position 12, and by the carboxyl-terminal extension.

View Article and Find Full Text PDF