Staphylococcus aureus and Pseudomonas aeruginosa are the most common bacteria co-isolated from chronic infected wounds. Their interactions remain unclear but this coexistence is beneficial for both bacteria and may lead to resistance to antimicrobial treatments. Besides, developing an in vitro model where this coexistence is recreated remains challenging, making difficult their study.
View Article and Find Full Text PDFThe development of innovative strategies for cell membranes engineering is of prime interest to explore and manipulate cell-cell interactions. Herein, an enzyme-sensitive recognition marker that can be introduced on cell surface via bioorthogonal chemistry is designed. Once functionalized in this fashion, the cells gain the ability to assemble with cell partners coated with the complementary marker through non-covalent click chemistry.
View Article and Find Full Text PDFBackground: Meyerozyma guilliermondii is a yeast species responsible for invasive fungal infections. It has high minimum inhibitory concentrations (MICs) to echinocandins, the first-line treatment of candidemia. In this context, azole antifungal agents are frequently used.
View Article and Find Full Text PDFThe design of innovative therapeutic strategies enabling the selective destruction of tumor cells while sparing healthy tissues remains highly challenging in cancer therapy. Here, we show that the combination of two targeted therapies, including bevacizumab (), and a β-glucuronidase-responsive albumin-binding prodrug of monomethyl auristatin E (), is efficient for the treatment of colorectal cancer implanted in mice. This combined therapy produces a therapeutic activity superior to that of the association of and currently used to treat patients with this pathology.
View Article and Find Full Text PDFThe discovery of tumour-associated markers is of major interest for the development of selective cancer chemotherapy. Within this framework, we introduced the concept of induced-volatolomics enabling to monitor simultaneously the dysregulation of several tumour-associated enzymes in living mice or biopsies. This approach relies on the use of a cocktail of volatile organic compound (VOC)-based probes that are activated enzymatically for releasing the corresponding VOCs.
View Article and Find Full Text PDF