We discuss a promising solid-state system that emits single photons at room temperature in the blue-green range, making it an attractive candidate for quantum communications in free space and underwater. The active element is a core-shell ZnSe tapered nanowire embedding a single CdSe quantum dot grown by molecular beam epitaxy. A patterned substrate enables a comprehensive study of a single nanowire using various methods.
View Article and Find Full Text PDFThe early stage of growth of semiconductor nanowires is studied in the case where the sidewall adatoms have a short diffusion length due to a strong desorption. Experimental results are described for the growth of ZnSe nanowires by molecular beam epitaxy. They are discussed and interpreted using the Burton-Cabrera-Frank description of the propagation of steps along the sidewalls, and compared to other II-VI and III-V nanowires.
View Article and Find Full Text PDFThe growth of ZnTe nanowires and ZnTe-CdTe nanowire heterostructures is studied by in situ transmission electron microscopy. We describe the shape and the change of shape of the solid gold nanoparticle during vapor-solid-solid growth. We show the balance between one monolayer and two monolayer steps, which characterizes the vapor-liquid-solid and vapor-solid-solid growth modes of ZnTe.
View Article and Find Full Text PDFThe propagation of sidewall steps during the growth of nanowires is calculated in the frame of the Burton-Cabrera-Frank model. The stable shape of the nanowire comprises a cylinder section on top of a cone section: their characteristics are obtained as a function of the radius of the catalyst-nanowire area, the desorption-limited diffusion length of adatoms on the terraces, and the sticking of adatoms at step edges. The comparison with experimental data allows us to evaluate these last two parameters for InP and ZnTe nanowires; it reveals a different behavior for the two materials, related to a difference by an order of magnitude of the desorption-limited diffusion length.
View Article and Find Full Text PDFA whole series of complementary studies have been performed on the same single nanowire containing a quantum dot: cathodoluminescence spectroscopy and imaging, micro-photoluminescence spectroscopy under magnetic field and as a function of temperature, and energy-dispersive x-ray spectrometry and imaging. The ZnTe nanowire was deposited on a SiN membrane with Ti/Al patterns. The complete set of data shows that the CdTe quantum dot features the heavy-hole state as a ground state, although the compressive mismatch strain promotes a light-hole ground state as soon as the aspect ratio is larger than unity (elongated dot).
View Article and Find Full Text PDF