Nigratine (also known as 6E11), a flavanone derivative of a plant natural product, was characterized as highly specific non-ATP competitive inhibitor of RIPK1 kinase, one of the key components of necroptotic cell death signaling. We show here that nigratine inhibited both necroptosis (induced by Tumor Necrosis Factor-α) and ferroptosis (induced by the small molecules glutamate, erastin, RSL3 or cumene hydroperoxide) with EC in the µM range. Taken together, our data showed that nigratine is a dual inhibitor of necroptosis and ferroptosis cell death pathways.
View Article and Find Full Text PDFThe purpose of this work is to investigate the protein kinase inhibitory activity of constituents from stem bark. Column chromatography and NMR spectroscopy were used to purify and characterize betulin from an ethyl acetate soluble fraction of acacia bark. Betulin, a known inducer of apoptosis, was screened against a panel of 16 disease-related protein kinases.
View Article and Find Full Text PDFArticular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold.
View Article and Find Full Text PDFThe marine α-pyrone macrolide neurymenolide A was previously isolated from the Fijian red macroalga, , and characterized as an antibacterial agent against antibiotic-resistant strains that also exhibited moderate cytotoxicity in vitro against cancer cell lines. This compound was also shown to exhibit allelopathic effects on Scleractinian corals. However, to date no mechanism of action has been described in the literature.
View Article and Find Full Text PDFTwo recent papers demonstrate that the 'tubulin code' - the pattern of chemical modifications of tubulin along a microtubule - is disrupted upon deletion or mutation of an enzyme, called CCP1, that removes one of these modifications. Ablation of CCP1 interferes with mitochondrial transport and causes human neurodegenerative disease, which may be amenable to pharmacological therapies.
View Article and Find Full Text PDF