Publications by authors named "J Chakhalian"

Pyrochlore materials are known for their exotic magnetic and topological phases arising from complex interactions among electron correlations, band topology, and geometric frustration. Interfaces between different pyrochlore crystals characterized by complex many-body ground states hold immense potential for novel interfacial phenomena due to the strong interactions between these phases. However, the realization of such interfaces has been severely hindered by limitations in material synthesis methods.

View Article and Find Full Text PDF
Article Synopsis
  • Pyrochlore iridates are notable for studying complex phenomena due to their strong spin-orbit coupling, electronic interactions, and geometrically frustrated lattice structures.
  • In thin films of (111) YIrO with thicknesses ≤30 nm, researchers found a unique quantum disordered state at temperatures as low as 5 K, which was characterized by dispersionless magnetic excitations.
  • Below approximately 125 K, an anomalous Hall effect suggests the existence of chiral spin configurations, attributed to magnetic frustration in the lower-dimensional structure that leads to spin-liquid behavior without long-range order.
View Article and Find Full Text PDF

Emergent magnetic phenomena at interfaces represent a frontier in materials science, pivotal for advancing technologies in spintronics and magnetic storage. In this Letter, we utilize a suite of advanced X-ray spectroscopic and scattering techniques to investigate emergent interfacial ferromagnetism in oxide superlattices composed of antiferromagnetic CaMnO and paramagnetic CaRuO. Our findings demonstrate that ferromagnetism exhibits an asymmetric profile and may extend beyond the interfacial layer into multiple unit cells of CaMnO.

View Article and Find Full Text PDF

The interplay between electronic interactions and strong spin-orbit coupling is expected to create a plethora of fascinating correlated topological states of quantum matter. Of particular interest are magnetic Weyl semimetals originally proposed in the pyrochlore iridates, which are only expected to reveal their topological nature in thin film form. To date, however, direct experimental demonstrations of these exotic phases remain elusive, due to the lack of usable single crystals and the insufficient quality of available films.

View Article and Find Full Text PDF

Complementary to bulk synthesis, here we propose a designer lattice with extremely high magnetic frustration and demonstrate the possible realization of a quantum spin liquid state from both experiments and theoretical calculations. In an ultrathin (111) CoCrO slice composed of three triangular and one kagome cation planes, the absence of a spin ordering or freezing transition is demonstrated down to 0.03 K, in the presence of strong antiferromagnetic correlations in the energy scale of 30 K between Co and Cr sublattices, leading to the frustration factor of ∼1000.

View Article and Find Full Text PDF