The increasing use of Metal-Organic Frameworks (MOFs) in separation, catalysis, or storage is linked to the targeted modification of their composition or porosity metrics. While modification of pore shape and size necessarily implies the assembly of alternative nets, compositional changes often rely on postsynthetic modification adapted to the functionalization or exchange of the organic linker or the modification of the inorganic cluster by metal exchange methods. We describe an alternative methodology that enables the integration of both types of modification, structural and compositional, in titanium MOFs by metal exchange reaction of the heterometallic cluster TiCa.
View Article and Find Full Text PDFThe induction of structural distortion in a controlled manner through tilt engineering has emerged as a potent method to finely tune the physical characteristics of Prussian blue analogues. Notably, this distortion can be chemically induced by filling their pores with cations that can interact with the cyanide ligands. With this objective in mind, we optimized the synthetic protocol to produce the stimuli-responsive Prussian blue analogue A Mn[Fe(CN)] with A = K, Rb, and Cs, to tune its stimuli-responsive behavior by exchanging the cation inside pores.
View Article and Find Full Text PDFChanging the perception of defects as imperfections in crystalline frameworks into correlated domains amenable to chemical control and targeted design might offer opportunities for the design of porous materials with superior performance or distinctive behavior in catalysis, separation, storage, or guest recognition. From a chemical standpoint, the establishment of synthetic protocols adapted to control the generation and growth of correlated disorder is crucial to consider defect engineering a practicable route towards adjusting framework function. By using UiO-66 as experimental platform, we systematically explored the framework chemical space of the corresponding defective materials.
View Article and Find Full Text PDFTitanium-organic frameworks offer distinctive opportunities in the realm of metal-organic frameworks (MOFs) due to the integration of intrinsic photoactivity or redox versatility in porous architectures with ultrahigh stability. Unfortunately, the high polarizing power of Ti cations makes them prone to hydrolysis, thus preventing the systematic design of these types of frameworks. We illustrate the use of heterobimetallic cluster TiCa as a persistent building unit compatible with the isoreticular design of titanium frameworks.
View Article and Find Full Text PDFResearch on metal-organic frameworks is shifting from the principles that control the assembly, structure, and porosity of these reticular solids, already established, into more sophisticated concepts that embrace chemical complexity as a tool for encoding their function or accessing new properties by exploiting the combination of different components (organic and inorganic) into these networks. The possibility of combining multiple linkers into a given network for multivariate solids with tunable properties dictated by the nature and distribution of the organic connectors across the solid has been well demonstrated. However, the combination of different metals remains still comparatively underexplored due to the difficulties in controlling the nucleation of heterometallic metal-oxo clusters during the assembly of the framework or the post-synthetic incorporation of metals with distinct chemistry.
View Article and Find Full Text PDF