The presence of bone growth marks reflecting annual rhythms in the cortical bone of non-avian tetrapods is now established as a general phenomenon. In contrast, ornithurines (the theropod group including modern birds and their closest relatives) usually grow rapidly in less than a year, such that no annual rhythms are expressed in bone cortices, except scarce growth marks restricted to the outer cortical layer. So far, cyclical growth in modern birds has been restricted to the Eocene Diatryma, the extant parrot Amazona amazonica and the extinct New Zealand (NZ) moa (Dinornithidae).
View Article and Find Full Text PDFThe amniotes generally lay eggs on land and are thereby differentiated from lissamphibians (salamanders, frogs and caecilians) by their developmental pattern. Although a number of 330-300-Myr old fossils are regarded as early tetrapods placed close to amniotes on the basis of anatomical data, we still do not know whether their developmental pattern was more similar to those of lissamphibians or amniotes. Here we report palaeohistological and skeletochronological evidence supporting a salamander-like development in the seymouriamorph Discosauriscus.
View Article and Find Full Text PDFThe biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking.
View Article and Find Full Text PDFIn spite of the fact that the potential usefulness of bone histology in systematics has been discussed for over one and a half centuries, the presence of a phylogenetic signal in the variation of histological characters has rarely been assessed. A quantitative assessment of phylogenetic signal in bone histological characters could provide a justification for performing optimizations of these traits onto independently generated phylogenetic trees (as has been done in recent years). Here we present an investigation on the quantification of the phylogenetic signal in the following bone histological, microanatomical, and morphological traits in a sample of femora of 35 species of sauropsids: vascular density, vascular orientation, index of Haversian remodeling, cortical thickness, and cross-sectional area (bone size).
View Article and Find Full Text PDFThe histological features of mineralized tissues can be preserved for hundreds of millions of years, and are therefore important potential sources of information for reconstructing the life history traits of extinct species. Bone growth rates and the duration of the growth period have recently been estimated in fossil archosaurs from periosteal ossification (a mechanism responsible for bone diametral growth). Similarly, data on endochondral ossification (the mechanism responsible for bone longitudinal growth) may also yield information on growth duration and rate among extinct vertebrates, as long as potentially informative structures are preserved.
View Article and Find Full Text PDF