This work describes a comprehensive assessment of operating parameters of a bench-scale electrodialysis (ED) plant for nutrient concentration from an Anaerobic Membrane BioReactor (AnMBR) effluent. The ED bench-scale plant serves a dual purpose. Firstly, to generate a concentrated stream with a high nutrient content, and secondly, to produce high-quality reclaimed water in the diluted stream, both sourced from real wastewater coming from the effluent of an AnMBR.
View Article and Find Full Text PDFThe present manuscript focuses on the study of the electrochemical oxidation of the insecticide Chlorfenvinphos (CVP). The assays were carried out under galvanostatic conditions using boron-doped diamond (BDD) and low-cost tin dioxide doped with antimony (Sb-doped SnO) as anodes. The influence of the operating variables, such as applied current density, presence or absence of a cation-exchange membrane and concentration of supporting electrolyte, was discussed.
View Article and Find Full Text PDFThe electrochemical oxidation of the antibiotic Norfloxacin (NOR) in chloride media on different anodic materials was studied at two different electrochemical reactors. The results were compared with those obtained in sulphate media. The anodes under study were a commercial boron-doped diamond (BBD) and two different ceramic electrodes based on tin oxide doped with antimony oxide in the presence (CuO) and absence (BCE) of copper oxide as sintering aid.
View Article and Find Full Text PDFNorfloxacin is employed as in veterinary and human medicine against gram-positive and gram-negative bacteria. Due to the ineffective treatment at the wastewater treatment plants it becomes an emergent pollutant. Electro-oxidation appears as an alternative to its effective mineralization.
View Article and Find Full Text PDFThe concerns about the undesired impacts on human health and the environment of long chain perfluorinated alkyl substances (PFASs) have driven industrial initiatives to replace PFASs by shorter chain fluorinated homologues. 6:2 fluorotelomer sulfonic acid (6:2 FTSA) is applied as alternative to PFOS in metal plating and fluoropolymer manufacture. This study reports the electrochemical treatment of aqueous 6:2 FTSA solutions on microcrystalline BDD anodes.
View Article and Find Full Text PDF