In this work, we introduce a 3D-printable virus-like particle (VLP)-enhanced cross-linked biopolymer system. VLPs displaying surface-available acrylate groups were prepared through aza-Michael addition to serve as resins. The VLP resins were then photopolymerized into a poly(ethylene glycol) diacrylate (PEGDA) network following DLP 3D printing.
View Article and Find Full Text PDFMany virus-like particles (VLPs) have good chemical, thermal, and mechanical stabilities compared to those of other biologics. However, their stability needs to be improved for the commercialization and use in translation of VLP-based materials. We developed an endoskeleton-armored strategy for enhancing VLP stability.
View Article and Find Full Text PDFThe aim of this study is to evaluate the personal dose equivalent Hp(10) in the most frequent (non-cardiac) paediatric interventional radiology (PIR) procedures: central venous catheters (CVC), hepatic/biliary and sclerotherapy interventions. i2 active solid-state dosemeters placed over the lead apron were used to monitor the exposure of three interventional radiologists over 18 months. A database was created to register all procedures performed by each radiologist (including the type of procedure and the kerma-area product, PKA).
View Article and Find Full Text PDFTriarylphosphines substituted with carboxylic and trifluoromethlyl groups have been prepared by the hydrolysis of trifluoromethyl groups using fuming sulfuric acid and boric acid. The reaction has been studied in a set of homoleptic and heteroleptic trifluoromethylated triarylphosphines and offers a new synthetic procedure for the preparation of carboxylic phosphines with a relatively simple methodology. The degree of carboxylation is modulated by the reaction conditions and is sensitive to the substitution pattern of the starting trifluoromethylated phosphines.
View Article and Find Full Text PDF