Novel nuclear medicine therapeutics are being developed by labeling medium-molecular-weight compounds with short-lived alpha-emitting radionuclides. Fibroblast activation protein α (FAPα) is recognized as a highly useful molecular target, and its inhibitor, FAPI, is a compound capable of , both therapeutic and diagnostic, for cancer treatment. In this study, we compared the functions of two compounds that target FAPα: At-FAPI1 and At-FAPI2.
View Article and Find Full Text PDFThe advancement of theranostics, which combines therapeutic and diagnostic capabilities in oncology, has significantly impacted cancer management. This review explores fibroblast activation protein (FAP) expression in the tumor microenvironment (TME) and its association with various malignancies, highlighting its potential as a theranostic marker for PET/CT imaging using FAP-targeted tracers and for FAP-targeted radiopharmaceutical therapy. We examine the development and clinical applications of FAP inhibitors (FAPIs) and peptides, providing insights into their diagnostic accuracy, initial therapeutic efficacy, and clinical impact across diverse cancer types, as well as the synthesis of novel FAP-targeted ligands.
View Article and Find Full Text PDFAstatine (At) is a cyclotron-produced alpha emitter with a physical half-life of 7.2 h. In our previous study, the At-labeled prostate-specific membrane antigen (PSMA) compound ([At]PSMA-5) exhibited excellent tumor growth suppression in a xenograft model.
View Article and Find Full Text PDFCurrently, targeted alpha therapy (TAT) is a new therapy involving the administration of a therapeutic drug that combines a substance of α-emitting nuclides that kill cancer cells and a drug that selectively accumulates in cancer cells. It is known to be effective against cancers that are difficult to treat with existing methods, such as cancer cells that are widely spread throughout the whole body, and there are high expectations for its early clinical implementation. The nuclides for TAT, including Tb, At, Bi, Pb (for Bi), Ra, Ac, Th, and U, are known.
View Article and Find Full Text PDF