Publications by authors named "J Cammenga"

Familial Platelet Disorder with associated Myeloid Malignancy (FPDMM, FPD/AML, -FPD), caused by monoallelic deleterious germline variants, is characterized by bleeding diathesis and predisposition for hematologic malignancies, particularly myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Clinical data on FPDMM-associated AML (FPDMM-AML) are limited, complicating evidence-based clinical decision-making. Here, we present retrospective genetic and clinical data of the largest cohort of FPDMM patients reported to date.

View Article and Find Full Text PDF

Increasing recognition of germline variants in patients with hematological malignancies prompted us to provide -specific recommendations for diagnosis, surveillance, and treatment. Causative germline variants in the predispose to the development of myeloid neoplasms (MNs), especially myelodysplastic syndrome (MDS) and acute myeloid leukemia (AML). Almost 3%-5% of all patients with MDS or AML carry a pathogenic or likely pathogenic germline variant, while half of them acquire a somatic second hit in the other allele.

View Article and Find Full Text PDF

SAMD9 and SAMD9L are two interferon-regulated genes located adjacent to each other on chromosome 7q21.2. Germline gain-of-function (GL GOF) mutations in SAMD9/SAMD9L are the genetic cause of MIRAGE syndrome, ataxia-pancytopenia (ATXPC) syndrome, myeloid leukemia syndrome with monosomy 7 (MLSM7), refractory cytopenia of childhood (RCC), transient monosomy 7 in children, SAMD9L-associated autoinflammatory disease (SAAD), and a proportion of inherited aplastic anemia and bone marrow failure syndromes.

View Article and Find Full Text PDF

Purpose: Clinical relapse is the major threat for patients with myelodysplastic syndrome (MDS) undergoing hematopoietic stem-cell transplantation (HSCT). Early detection of measurable residual disease (MRD) would enable preemptive treatment and potentially reduced relapse risk.

Methods: Patients with MDS planned for HSCT were enrolled in a prospective, observational study evaluating the association between MRD and clinical outcome.

View Article and Find Full Text PDF

Hematopoietic stem cells (HSCs) are tightly controlled to maintain a balance between blood cell production and self-renewal. While inflammation-related signaling is a critical regulator of HSC activity, the underlying mechanisms and the precise functions of specific factors under steady-state and stress conditions remain incompletely understood. We investigated the role of interferon regulatory factor 1 (IRF1), a transcription factor that is affected by multiple inflammatory stimuli, in HSC regulation.

View Article and Find Full Text PDF