Publications by authors named "J Cambedouzou"

Already used in the food, pharmaceutical, cosmetic, and agrochemical industries, encapsulation is a strategy used to protect active ingredients from external degradation factors and to control their release kinetics. Various encapsulation techniques have been studied, both to optimise the level of protection with respect to the nature of the aggressor and to favour a release mechanism between diffusion of the active compounds and degradation of the barrier material. Biopolymers are of particular interest as wall materials because of their biocompatibility, biodegradability, and non-toxicity.

View Article and Find Full Text PDF

This review aims to gather the current state of the art on the encapsulation methods using alginate as the main polymeric material in order to produce hydrogels ranging from the microscopic to macroscopic sizes. The use of alginates as an encapsulation material is of growing interest, as it is fully bio-based, bio-compatible and bio-degradable. The field of application of alginate encapsulation is also extremely broad, and there is no doubt it will become even broader in the near future considering the societal demand for sustainable materials in technological applications.

View Article and Find Full Text PDF

Growing cells in a biomimetic environment is critical for tissue engineering as well as for studying the cell biology underlying disease mechanisms. To this aim a range of 3D matrices have been developed, from hydrogels to decellularized matrices. They need to mimic the extracellular matrix to ensure the optimal growth and function of cells.

View Article and Find Full Text PDF

We report the proof-of-concept of spark plasma sintered (SPS) consolidated mesoporous composite catalytic electrodes based on nickel-copper alloys and carbon nanotubes for the electrocatalytic hydrogen evolution reaction (HER) in alkaline media. The optimized electrode (203 m g, 5 wt% NiCu) operated at -0.1 A cm (current of -0.

View Article and Find Full Text PDF

Photocatalytically active silicon carbide (SiC)-based mesoporous layers (pore sizes between 5 and 30 nm) were synthesized from preceramic polymers (polymer-derived ceramic route) on the surface and inside the pores of conventional macroporous α-alumina supports. The hybrid membrane system obtained, coupling the separation and photocatalytical properties of SiC thin films, was characterized by different static and dynamic techniques, including gas and liquid permeation measurements. The photocatalytic activity was evaluated by considering the degradation efficiency of a model organic pollutant (methylene blue, MB) under UV light irradiation in both diffusion and permeation modes using SiC-coated macroporous supports.

View Article and Find Full Text PDF