When we were asked to produce articles for this volume, it seemed appropriate to us to co-author an article on the history and impact of copper research in Melbourne. It is appropriate because over many years, decades in fact, we worked closely together and with Professor David Danks to identify the molecular defect in Menkes disease. This work was always carried out with the intention of understanding the nature of the copper homeostatic mechanisms and a "copper pathway" in the cell, that David had the prescience to predict must exist despite scepticism from granting agencies! He indeed inspired us to pursue research careers in this field.
View Article and Find Full Text PDFExpression of human amyloid-β (Aβ) in Drosophila is frequently used to investigate its toxicity in vivo. We expressed Aβ1-42 in the fly using a secretion signal derived from the Drosophila necrotic gene, as described in several previous publications. Surface-enhanced laser desorption/ionization TOF MS analysis revealed that the Aβ produced contained an additional glutamine residue at the N-terminus.
View Article and Find Full Text PDFAmyloid precursor protein (APP) undergoes post-translational modification, including O- and N-glycosylation, ubiquitination, and phosphorylation as it traffics through the secretory pathway. We have previously reported that copper promotes a change in the cellular localization of APP. We now report that copper increases the phosphorylation of endogenous APP at threonine 668 (Thr-668) in SH-SY5Y neuronal cells.
View Article and Find Full Text PDFAbnormal biometal homeostasis is a central feature of many neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), and motor neuron disease. Recent studies have shown that metal complexing compounds behaving as ionophores such as clioquinol and PBT2 have robust therapeutic activity in animal models of neurodegenerative disease; however, the mechanism of neuroprotective action remains unclear. These neuroprotective or neurogenerative processes may be related to the delivery or redistribution of biometals, such as copper and zinc, by metal ionophores.
View Article and Find Full Text PDFCopper (Cu) is an essential redox active metal that is potentially toxic in excess. Multicellular organisms acquire Cu from the diet and must regulate uptake, storage, distribution and export of Cu at both the cellular and organismal levels. Systemic Cu deficiency can be fatal, as seen in Menkes disease patients.
View Article and Find Full Text PDF