Surface charge is a critical feature of microbes that affects their interactions with other cells and their environment. Because bacterial surface charge is difficult to measure directly, it is typically indirectly inferred through zeta potential measurements. Existing tools to perform such characterization are either costly and ill-suited for non-spherical samples or rely on microfluidic techniques requiring expensive fabrication equipment or specialized facilities.
View Article and Find Full Text PDFPolyphenols are naturally derived organic compounds that have long been used as food additives, antioxidants, and adhesives owing to their intrinsic physicochemical properties. Recently, there has been growing interest in the fabrication of coordination networks based on the self-assembly of polyphenols and metal ions, termed metal-phenolic networks (MPNs), for multiple biological applications including bioimaging, drug delivery, and cell encapsulation. The as-synthesized MPN complexes feature pH responsiveness, controllable size and rigidity, and tunable permeability based on the choice of polyphenol-metal ion pairs.
View Article and Find Full Text PDFWe present a novel concept for the controlled trapping and releasing of beads and cells in a PDMS microfluidic channel without obstacles present around the particle or in the channel. The trapping principle relies on a two-level microfluidic configuration: a top main PDMS channel interconnected to a buried glass microchannel using round vias. As the fluidic resistances rule the way the liquid flows inside the channels, particles located in the streamlines passing inside the buried level are immobilized by the round with a smaller diameter, leaving the object motionless in the upper PDMS channel.
View Article and Find Full Text PDFBesides the main cortical inputs to the basal ganglia, the corticostriatal projection, there is another input the corticosubthalamic projection (CSTP), terminating in the subthalamic nucleus (STN). The present study investigated and compared the CSTPs originating from the premotor cortex (PM) or the primary motor cortex (M1) in two groups of adult macaque monkeys. The first group includes six intact monkeys, whereas the second group was made up of four monkeys subjected to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) intoxication producing Parkinson's disease (PD)-like symptoms and subsequently treated with an autologous neural cell ecosystem (ANCE) therapy.
View Article and Find Full Text PDF