Objective: Clinical rating scales often fail to capture the full spectrum of dystonic symptoms. Deep brain stimulation of the globus pallidus interna (GPi-DBS) effectively treats dystonia, but response variability necessitates a reliable biomarker. Intermuscular coherence (4-12 Hz) has been linked to abnormal activity in the cortico-basal ganglia-thalamo-cortical (CBGTC) loop and may serve as an objective measure of dystonia and GPi-DBS effectiveness.
View Article and Find Full Text PDFA challenge of any biosensing technology is the detection of very low concentrations of analytes. The fluorescence interference contrast (FLIC) technique improves the fluorescence-based sensitivity by selectively amplifying, or suppressing, the emission of a fluorophore-labeled biomolecule immobilized on a transparent layer placed on top of a mirror basal surface. The standing wave of the reflected emission light means that the height of the transparent layer operates as a surface-embedded optical filter for the fluorescence signal.
View Article and Find Full Text PDFBackground: Magnetic resonance imaging (MRI) has shown limited diagnostic accuracy for multiple ligament knee injuries (MLKIs), especially posterolateral corner (PLC) injuries.
Hypothesis: The diagnostic accuracy of MRI for MLKIs will only be moderate for some knee structures. Patient-related factors and injury patterns could modify the diagnostic accuracy of MRI.
Objective: Deep brain stimulation of the subthalamic nucleus (STN-DBS) is an established treatment in advanced Parkinson's disease (PD). However, the clinical outcome after STN-DBS is variable. The aim of this study was to explore the coherence of antagonistic muscles measured with electromyography (EMG) as novel biomarker of STN-DBS efficacy in PD.
View Article and Find Full Text PDF