Publications by authors named "J C Zeller"

Background: C-reactive protein (CRP) represents a routine diagnostic marker of inflammation. Dissociation of native pentameric CRP (pCRP) into the monomeric structure (mCRP) liberates proinflammatory features, presumably contributing to excessive immune cell activation via unknown molecular mechanisms.

Results: In a multi-translational study of systemic inflammation, we found a time- and inflammation-dependent pCRP dissociation into mCRP.

View Article and Find Full Text PDF

Typological research shows that across languages, trilled [r] sounds are more common in adjectives describing rough as opposed to smooth surfaces. In this study, this lexical research is built on with an experiment with speakers of 28 different languages from 12 different families. Participants were presented with images of a jagged and a straight line and imagined running their finger along each.

View Article and Find Full Text PDF

Alzheimer's dementia is the main cause of cognitive impairment in people over the age of 65, with Alzheimer's disease starting presumably 10-15 years before the onset of clinical symptoms. It is therefore important to recognize dementia at an early stage and identify possible predictors. The existing methods, like different parameters of ß-Amyloid and Tau quantification in cerebrospinal fluid (CSF) or the living brain by measure of PET, are invasive and expensive.

View Article and Find Full Text PDF

Background: CRP (C-reactive protein) is a prototypical acute phase reactant. Upon dissociation of the pentameric isoform (pCRP [pentameric CRP]) into its monomeric subunits (mCRP [monomeric CRP]), it exhibits prothrombotic and proinflammatory activity. Pathophysiological shear rates as observed in aortic valve stenosis (AS) can influence protein conformation and function as observed with vWF (von Willebrand factor).

View Article and Find Full Text PDF

Introduction: Despite advancements in transplant immunology and vascularized composite allotransplantation (VCA), the longevity of allografts remains hindered by the challenge of allograft rejection. The acute-phase response, an immune-inflammatory reaction to ischemia/reperfusion that occurs directly after allogeneic transplantation, serves as a catalyst for graft rejection. This immune response is orchestrated by acute-phase reactants through intricate crosstalk with the mononuclear phagocyte system.

View Article and Find Full Text PDF