Publications by authors named "J C Yong"

Nickel (Ni) is required in trace amounts (less than 500 µg kg) in plants to regulate metabolic processes, the immune system, and to act as an enzymatic catalytic cofactor. Conversely, when nickel is present in high concentration, it is considered as a toxic substance. Excessive human nickel exposure occurs through ingestion, inhalation, and skin contact, ultimately leading to respiratory, cardiovascular, and chronic kidney diseases.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how Benzo[a]pyrene (BaP), an environmental pollutant, affects the progression of nonalcoholic fatty liver disease (NAFLD) through its interaction with the AHR/ERα axis.
  • In experiments using high-fat diet models and Oleic acid treatment on HepG2 cells and C57BL/6J mice, exposure to BaP was found to inhibit ERα protein levels and disrupt lipid metabolism, evidenced by changes in key biomarkers (CYP1A1, SREBP-1c).
  • The presence of estradiol (E2) can mitigate some negative effects of Oleic acid on lipid accumulation; however, BaP reduces the beneficial effects of E
View Article and Find Full Text PDF

Nanoparticle-mediated delivery of nucleic acids and proteins into intact plants has the potential to modify metabolic pathways and confer desirable traits in crops. Here we show that layered double hydroxide (LDH) nanosheets coated with lysozyme are actively taken up into the root tip, root hairs and lateral root junctions by endocytosis, and translocate via an active membrane trafficking pathway in plants. Lysozyme coating enhanced nanosheet uptake by (1) loosening the plant cell wall and (2) stimulating the expression of endocytosis and other membrane trafficking genes.

View Article and Find Full Text PDF

Background/aim: Diabetic retinopathy (DR), a complication of diabetes, causes damage to retinal blood vessels and can lead to vision impairment. Persistent high blood glucose levels contribute to this damage, and despite ongoing research, effective treatment options for DR remain limited. Dimethyl sulfoxide (DMSO) has shown anti-inflammatory and antioxidant properties in both in vivo and in vitro studies; however, its potential as an anti-inflammatory agent in the context of DR has not yet been explored.

View Article and Find Full Text PDF