Publications by authors named "J C Yonchek"

Neurological symptoms following cerebellar stroke can range from motor to cognitive-affective impairments. Topographic imaging studies from patients with lesions confined to the cerebellum have shown evidence linking anterior cerebellar lobules with motor function and posterior lobules with cognitive function. Damage to the cerebellum can disrupt functional connectivity in cerebellar stroke patients, as it is highly interconnected with forebrain motor and cognitive areas.

View Article and Find Full Text PDF

Ischemic brain damage is triggered by glutamate excitotoxicity resulting in neuronal cell death. Previous research has demonstrated that N-methly-D-aspartate (NMDA) receptor activation triggers downstream calcium-dependent signaling pathways, specifically Ca/calmodulin-dependent protein kinase II (CaMKII). Inhibiting CaMKII is protective against hippocampal ischemic injury, but there is little known about its role in the cerebellum.

View Article and Find Full Text PDF

The incidence of stroke in children is 2.4 per 100,000 person-years and results in long-term motor and cognitive disability. In ischemic stroke, white matter (WM) is frequently injured, but is relatively understudied compared to grey matter injury.

View Article and Find Full Text PDF

Replacement of dead neurons following ischemia, either via enhanced endogenous neurogenesis or stem cell therapy, has long been sought. Unfortunately, while various therapies that enhance neurogenesis or stem cell therapies have proven beneficial in animal models, they have all uniformly failed to truly replace dead neurons in the ischemic core to facilitate long-term recovery. Remarkably, we observe robust repopulation of medium-spiny neurons within the ischemic core of juvenile mice following experimental stroke.

View Article and Find Full Text PDF

The role of biological sex in short-term and long-term outcome after traumatic brain injury (TBI) remains controversial. The observation that exogenous female sex steroids (progesterone and estrogen) reduce brain injury coupled with a small number of clinical studies showing smaller injury in women suggest that sex steroids may play a role in outcome from TBI. We used the controlled cortical impact (CCI) model of TBI in mice to test the hypothesis that after CCI, female mice would demonstrate less injury than male mice, related to the protective role of endogenous steroids.

View Article and Find Full Text PDF