Background: In the event of a nuclear accident, people are exposed to elevated levels of continuous low dose-rate radiation. Nevertheless, most of the literature describes the biological effects of acute radiation.
Objectives: DNA damage and mutations are well established for their carcinogenic effects.
Pulmonary tissue is sensitive and often treatment-limiting in patients exposed to total-body irradiation (TBI) in preparation for hematopoietic stem cell transplantation. Many rodent strains, however, exhibit a relatively high resistance to radiation lung damage that often requires extra radiation doses to be delivered locally to the thorax to generate significant levels of pulmonary injury. The present study compared the effects of TBI and bone marrow transplantation (BMT) on two mouse strains that are known to differ in lung radiosensitivity after whole-thorax irradiation, namely the relatively resistant CBA mice and the sensitive C57L mice.
View Article and Find Full Text PDFRadiation exposure of humans generally results in low doses delivered at low dose rate. Our limited knowledge of the biological effects of low dose radiation is mainly based on data from the atomic bomb Life Span Study (LSS) cohort. However, the total doses and dose rates in the LSS cohort are still higher than most environmental and occupational exposures in humans.
View Article and Find Full Text PDFPurpose: To estimate the increase in effective radiation dose from diagnostic x-rays for overweight and obese adult patients, as compared with the effective dose for lean reference phantoms.
Materials And Methods: Relative effective radiation doses (E/E(0)) for the acquisition of chest and abdominal radiographs were calculated by using Monte Carlo computer simulations of effective doses delivered to adult phantoms with (E) and without (E(0)) subcutaneous adipose tissue added to the torso for five fat distributions. Total (anterior plus posterior) fat thicknesses ranged from 0 to 38 cm.
Boron neutron capture synovectomy (BNCS) is under development as a potential treatment modality for rheumatoid arthritis (RA). RA is characterized by the inflammation of the synovium (the membrane lining articular joints), which leads to pain and a restricted range of motion. BNCS is a two-part procedure involving the injection of a boronated compound directly into the diseased joint followed by irradiation with a low-energy neutron beam.
View Article and Find Full Text PDF