Publications by authors named "J C Wolters"

Alzheimer's disease (AD) affects millions of people worldwide and represents the most prevalent form of dementia. Treatment strategies aiming to interfere with the formation of amyloid β (Aβ) plaques and neurofibrillary tangles (NFTs), the two major AD hallmarks, have shown modest or no effect. Recent evidence suggests that ferroptosis, a type of programmed cell death caused by iron accumulation and lipid peroxidation, contributes to AD pathogenesis.

View Article and Find Full Text PDF

The utilization of oxygen transport membranes enables the production of high-purity hydrogen by the thermal decomposition of water below 1000 °C. This process is based on a chemical potential gradient across the membrane, which is usually achieved by introducing a reducing gas. Computational fluid dynamics (CFD) can be used to model reactors based on this concept.

View Article and Find Full Text PDF

Transport through the nuclear pore complex (NPC) relies on intrinsically disordered FG-nucleoporins (FG-Nups) forming a selective barrier. Away from the NPC, FG-Nups readily form condensates and aggregates, and we address how this behavior is surveilled in cells. FG-Nups, including Nsp1, together with the nuclear transport receptor Kap95, form a native daughter cell-specific cytosolic condensate in yeast.

View Article and Find Full Text PDF

Although implicated as deleterious in many organisms, aneuploidy can underlie rapid phenotypic evolution. However, aneuploidy will be maintained only if the benefit outweighs the cost, which remains incompletely understood. To quantify this cost and the molecular determinants behind it, we generated a panel of chromosome duplications in Saccharomyces cerevisiae and applied comparative modeling and molecular validation to understand aneuploidy toxicity.

View Article and Find Full Text PDF
Article Synopsis
  • Distantly related organisms, like cactophilic yeasts, can evolve similar traits and lifestyles to survive in comparable environments, with this study analyzing over 1,000 yeast species to understand their convergent evolution.
  • Researchers found that cactophily (association with cacti) evolved independently about 17 times and could be predicted with 76% accuracy using genomic and phenotypic data, with thermotolerance being the most significant factor.
  • The study also revealed horizontal gene transfer and duplications in genes related to plant cell wall degradation, indicating that these adaptive traits arose from different molecular pathways, and highlighted a potential link between cactophilic lifestyles and yeast becoming human pathogens.
View Article and Find Full Text PDF