Publications by authors named "J C Wijkmans"

Recent studies have shown that upon certain vaccinations or infections human innate immune cells can undergo extensive metabolic and epigenetic reprogramming, which results in enhanced immune responses upon heterologous re-infection, a process termed trained immunity. Trained immunity has also been shown to be inappropriately activated in inflammatory diseases. This provides the potential for identifying novel therapeutic targets: potentiation of trained immunity could protect from secondary infections and reverse immunotolerant states, while inhibition of trained immunity might reduce excessive immune activation in chronic inflammatory conditions.

View Article and Find Full Text PDF

We have shown previously that different chemical classes of small-molecule antagonists of the human chemokine CXCR2 receptor interact with distinct binding sites of the receptor. Although an intracellular binding site for diarylurea CXCR2 antagonists, such as N-(2-bromophenyl)-N'-(7-cyano-1H-benzotriazol-4-yl)urea (SB265610), and thiazolopyrimidine compounds was recently mapped by mutagenesis studies, we now report on an imidazolylpyrimidine antagonist binding pocket in the transmembrane domain of CXCR2. Using different CXCR2 orthologs, chimeric proteins, site-directed mutagenesis, and in silico modeling, we have elucidated the binding mode of this antagonist.

View Article and Find Full Text PDF

Introduction: Cathepsin K is a lysosomal cysteine protease involved in osteoclast-mediated bone resorption. Inhibition of cathepsin K represents a potentially attractive therapeutic approach for treating diseases characterized by excessive bone resorption, such as osteoporosis.

Areas Covered: The present review provides an overview of low molecular weight cathepsin K inhibitors published in the patent literature from July 2004 to 2010.

View Article and Find Full Text PDF

The chemokine receptor CXCR2 is involved in different inflammatory diseases, like chronic obstructive pulmonary disease, psoriasis, rheumatoid arthritis, and ulcerative colitis; therefore, it is considered an attractive drug target. Different classes of small CXCR2 antagonists have been developed. In this study, we selected seven CXCR2 antagonists from the diarylurea, imidazolylpyrimide, and thiazolopyrimidine class and studied their mechanisms of action at human CXCR2.

View Article and Find Full Text PDF