Protein degradation using proteolysis targeting chimeras (PROTACs) represents a promising therapeutic strategy. PROTACs are heterobifunctional molecules that consist of a target-binding moiety and an E3 ligase binding moiety, connected by a linker. These fragments are frequently united via amide bonds.
View Article and Find Full Text PDFThe salt-inducible kinases (SIK) 1-3 are key regulators of pro- versus anti-inflammatory cytokine responses during innate immune activation. The lack of highly SIK-family or SIK isoform-selective inhibitors suitable for repeat, oral dosing has limited the study of the optimal SIK isoform selectivity profile for suppressing inflammation in vivo. To overcome this challenge, we devised a structure-based design strategy for developing potent SIK inhibitors that are highly selective against other kinases by engaging two differentiating features of the SIK catalytic site.
View Article and Find Full Text PDFNatural killer group 2D (NKG2D) is a homodimeric activating immunoreceptor whose function is to detect and eliminate compromised cells upon binding to the NKG2D ligands (NKG2DL) major histocompatibility complex (MHC) molecules class I-related chain A (MICA) and B (MICB) and UL16 binding proteins (ULBP1-6). While typically present at low levels in healthy cells and tissue, NKG2DL expression can be induced by viral infection, cellular stress or transformation. Aberrant activity along the NKG2D/NKG2DL axis has been associated with autoimmune diseases due to the increased expression of NKG2D ligands in human disease tissue, making NKG2D inhibitors an attractive target for immunomodulation.
View Article and Find Full Text PDFTarget 2035, an international federation of biomedical scientists from the public and private sectors, is leveraging 'open' principles to develop a pharmacological tool for every human protein. These tools are important reagents for scientists studying human health and disease and will facilitate the development of new medicines. It is therefore not surprising that pharmaceutical companies are joining Target 2035, contributing both knowledge and reagents to study novel proteins.
View Article and Find Full Text PDF