Genome-wide association studies (GWAS) help to identify disease-linked genetic variants, but pinpointing the most likely causal genes in GWAS loci remains challenging. Existing GWAS gene prioritization tools are powerful, but often use complex black box models trained on datasets containing unaddressed biases. Here we present CALDERA, a gene prioritization tool that achieves similar or better performance than state-of-the-art methods, but uses just 12 features and a simple logistic regression model with L1 regularization.
View Article and Find Full Text PDFIdentifying the causal variants and mechanisms that drive complex traits and diseases remains a core problem in human genetics. The majority of these variants have individually weak effects and lie in non-coding gene-regulatory elements where we lack a complete understanding of how single nucleotide alterations modulate transcriptional processes to affect human phenotypes. To address this, we measured the activity of 221,412 trait-associated variants that had been statistically fine-mapped using a Massively Parallel Reporter Assay (MPRA) in 5 diverse cell-types.
View Article and Find Full Text PDFFine-mapping aims to identify causal genetic variants for phenotypes. Bayesian fine-mapping algorithms (for example, SuSiE, FINEMAP, ABF and COJO-ABF) are widely used, but assessing posterior probability calibration remains challenging in real data, where model misspecification probably exists, and true causal variants are unknown. We introduce replication failure rate (RFR), a metric to assess fine-mapping consistency by downsampling.
View Article and Find Full Text PDF