Publications by authors named "J C Sluimer"

Background: Although mice are used extensively to study atherosclerosis of different vascular beds, limited data is published on the occurrence of intracranial atherosclerosis. Since intracranial atherosclerosis is a common cause of stroke and is associated with dementia, a relevant animal model is needed to study these diseases.

Methods And Results: We examined the presence of intracranial atherosclerosis in different atherogenic mouse strains and studied differences in vessel wall characteristics in mouse and human tissue in search for possible explanations for the different atherosclerotic susceptibility between extracranial and intracranial vessels.

View Article and Find Full Text PDF

Atherosclerosis is a pervasive contributor to ischemic heart disease and stroke. Despite the advance of lipid-lowering therapies and anti-hypertensive agents, the residual risk of an atherosclerotic event remains high, and developing therapeutic strategies has proven challenging. This is due to the complexity of atherosclerosis with a spatial interplay of multiple cell types within the vascular wall.

View Article and Find Full Text PDF
Article Synopsis
  • Globally, while people are living longer, many experience a decline in health due to age-related diseases, highlighting the need for better classification systems to address these issues.
  • A consensus meeting with 150 experts established criteria for identifying ageing-related pathologies, requiring a 70% agreement for approval among participants.
  • The agreed criteria focus on conditions that progress with age, contribute to functional decline, and are backed by human studies, setting a foundation for future classification and staging efforts.
View Article and Find Full Text PDF

Cell activation and nutrient dysregulation are common consequences of atherosclerosis and its preceding risk factors, such as hypertension, dyslipidemia, and diabetes. These diseases may also impact cellular metabolism and consequently cell function, and the other way around, altered cellular metabolism can impact disease development and progression through altered cell function. Understanding the contribution of altered cellular metabolism to atherosclerosis and how cellular metabolism may be altered by co-morbidities and atherosclerosis risk factors could support the development of novel strategies to lower the risk of CVD.

View Article and Find Full Text PDF