Publications by authors named "J C Pursey"

Objectives: To identify areas of agreement and disagreement in the implementation of multi-parametric magnetic resonance imaging (mpMRI) of the prostate in the diagnostic pathway.

Materials And Methods: Fifteen UK experts in prostate mpMRI and/or prostate cancer management across the UK (involving nine NHS centres to provide for geographical spread) participated in a consensus meeting following the Research and Development Corporation and University of California-Los Angeles (UCLA-RAND) Appropriateness Method, and were moderated by an independent chair. The experts considered 354 items pertaining to who can request an mpMRI, prostate mpMRI protocol, reporting guidelines, training, quality assurance (QA) and patient management based on mpMRI levels of suspicion for cancer.

View Article and Find Full Text PDF

Serum background is a critical issue for biosensor development as it interferes with the detection of target molecules and may give rise to false positive signal. We present here highly sensitive and selective TNF-α biosensor which is able to detect TNF-α from non-diluted human serum using magnetic bead coupled antibody and electrochemical impedance spectroscopy (EIS) techniques. The process is designed to detect TNF-α from human serum in three stages; (1) abundant protein backgrounds are depleted from the serum using magnetic bead coupled albumin and IgG antibodies, (2) after background depletion TNF-α is captured using magnetic bead coupled TNF-α antibody, and (3) the captured TNF-α is eluted from the magnetic beads and measured using EIS technique in which comb structured gold microelectrodes array (CSGM) is utilized to enhance the detection sensitivity.

View Article and Find Full Text PDF

The conventional model of polymeric IgM depicts a unique structure in which the mu heavy chains and J chain are joined by well defined disulfide bonds involving cysteine residues at positions 337, 414 and 575 of the mu chain. To test this model, we have used site directed mutagenesis to produce IgM in which these cysteines have been replaced by serine. In each case the single mutants were able to assemble polymeric IgM, which was analyzed for its size, morphology, J chain content and activity in complement dependent cytolysis.

View Article and Find Full Text PDF

The chromosomal locations of several genes responsible for increased malathion resistance in a laboratory-selected population of Drosophila melanogaster have been determined. These genes appear to be involved in the regulation of microsomal cytochrome P-450. A major gene on chromosome 2 (2-64) and at least two genes on chromosome 3 (near 3-58) control increased mixed function oxidase activity, and both larval and adult malathion resistance.

View Article and Find Full Text PDF