Publications by authors named "J C Polf"

We demonstrate the first ever recorded positron-emission tomography (PET) imaging and dosimetry of a FLASH proton beam at the Proton Center of the MD Anderson Cancer Center. Two scintillating LYSO crystal arrays, read out by silicon photomultipliers, were configured with a partial field of view of a cylindrical poly-methyl methacrylate (PMMA) phantom irradiated by a FLASH proton beam. The proton beam had a kinetic energy of 75.

View Article and Find Full Text PDF

. Range uncertainty is a major concern affecting the delivery precision in proton therapy. The Compton camera (CC)-based prompt-gamma (PG) imaging is a promising technique to provide 3Drange verification.

View Article and Find Full Text PDF

Background And Purpose: Pancreatic cancer (PC) is the fourth leading cause of cancer death in both men and women. The standard of care for patients with locally advanced PC of chemotherapy, stereotactic radiotherapy (RT), or chemo-radiation-therapy has shown highly variable and limited success rates. However, three-dimensional (3D) Pancreatic tumor organoids (PTOs) have shown promise to study tumor response to drugs, and emerging treatments under conditions.

View Article and Find Full Text PDF

We studied the application of a deep, fully connected Neural Network (NN) to process prompt gamma (PG) data measured by a Compton camera (CC) during the delivery of clinical proton radiotherapy beams. The network identifies 1) recorded "bad" PG events arising from background noise during the measurement, and 2) the correct ordering of PG interactions in the CC to help improve the fidelity of "good" data used for image reconstruction. PG emission from a tissue-equivalent target during irradiation with a 150 MeV proton beam delivered at clinical dose rates was measured with a prototype CC.

View Article and Find Full Text PDF

The purpose of this study was to determine how the characteristics of the data acquisition (DAQ) electronics of a Compton camera (CC) affect the quality of the recorded prompt gamma (PG) interaction data and the reconstructed images, during clinical proton beam delivery. We used the Monte-Carlo-plus-Detector-Effect (MCDE) model to simulate the delivery of a 150 MeV clinical proton pencil beam to a tissue-equivalent plastic phantom. With the MCDE model we analyzed how the recorded PG interaction data changed as two characteristics of the DAQ electronics of a CC were changed: (1) the number of data readout channels; and (2) the active charge collection, readout, and reset time.

View Article and Find Full Text PDF