For hundreds of years, intuitively or deliberately, farmers and breeders have taken advantage of the slow and constant renewal of genetic diversity in their domesticated plants or animals. Their management efficiently combines selection to maintain existing varieties or breeds and selection to extract new biological items meeting incoming necessities and environmental changes. The traditional practice is now criticized for three main reasons.
View Article and Find Full Text PDFBetween 1950 and 1960 mitochondria were recognized as well-characterized organelles of animal and fungal cells. They shared more functional autonomy than other cellular structures. The transmission of some mitochondrial characteristics did not obey Mendelian rules and followed cytoplasmic inheritance patterns.
View Article and Find Full Text PDFIntegrative Biology is exemplified by a diversity of recently established collaborations to study the genetic diversity of the European rabbit, Oryctolagus cuniculus. Molecular markers were developed and used to investigate the link between wild population decreases or domestication procedures and possible losses of genetic diversity. Simultaneously, a European programme was launched for the management of genetic resources.
View Article and Find Full Text PDFComplete sequences of seven protein coding genes from Penaeus notialis mitochondrial DNA were compared in base composition and codon usage with homologous genes from Artemia franciscana and four insects. The crustacean genes are significantly less A + T-rich than their counterpart in insects and the pattern of codon usage (ratio of G + C-rich versus A + T-rich codon) is less biased. A phylogenetic analysis using amino acid sequences of the seven corresponding polypeptides supports a sister-taxon status for mollusks-annelid and arthropods.
View Article and Find Full Text PDF