Publications by authors named "J C Michael Dunham"

Identifying populations at highest risk from climate change is a critical component of conservation efforts. However, vulnerability assessments are usually applied at the species level, even though intraspecific variation in exposure, sensitivity and adaptive capacity play a crucial role in determining vulnerability. Genomic data can inform intraspecific vulnerability by identifying signatures of local adaptation that reflect population-level variation in sensitivity and adaptive capacity.

View Article and Find Full Text PDF
Article Synopsis
  • Wildfire regimes are altering, raising concerns for aquatic ecosystems and fish species, as predicting fish responses can be complex due to multiple wildfire impacts.
  • Whole-ecosystem approaches like food web modeling can help understand these interactions, showing how different wildfire severities affect aquatic life dynamics in streams.
  • Simulations reveal that wildfires can have varying effects on periphyton, invertebrates, and fish biomass, influenced by fire severity and environmental changes, indicating a need to consider context when assessing wildfire impacts on aquatic ecosystems.
View Article and Find Full Text PDF

In systemic lupus erythematosus (lupus), environmental effects acting within a permissive genetic background lead to autoimmune dysregulation. Dysfunction of CD4+ T cells contributes to pathology by providing help to autoreactive B and T cells, and CD4+ T cell dysfunction coincides with altered DNA methylation and histone modifications of select gene loci. However, chromatin accessibility states of distinct T cell subsets and mechanisms driving heterogeneous chromatin states across patients remain poorly understood.

View Article and Find Full Text PDF

Alpha-1 antitrypsin (AAT) deficiency is the most common genetic cause of emphysema. Chymotrypsin-like Elastase 1 (CELA1) is a serine protease neutralized by AAT and is important in emphysema progression. Cela1-deficiency is protective in a murine models of AAT-deficient emphysema.

View Article and Find Full Text PDF

Temporally variable climates are expected to drive the evolution of thermal physiological traits that enable performance across a wider range of temperatures (i.e. climate variability hypothesis, CVH).

View Article and Find Full Text PDF