In order to confirm the phytotoxicological basis for the ecological specialization of larval culicine fauna among different subalpine mosquito breeding sites, we compared the capability of six different Aedes larval taxa or populations of different ecological origin to detoxify dietary leaf litter originating from the environmental vegetation. Detoxification experiments were performed through in vitro digestion of a toxic leaf litter fraction using larval extracts as the enzymatic sources. Comparison of toxicological and detoxifying properties among the different larval samples indicates an association between their tolerance to leaf litter toxicants and their detoxification capability, which vary according to ecological origin.
View Article and Find Full Text PDFIn order to examine the usefulness of detoxifying genes as molecular markers in different chemical environments, isolation of cytochrome P450 genes (CYPs) belonging to the CYP4 family was performed in different samples from two subalpine populations of Daphnia pulex. The use of degenerate primers allowed us to isolate seven cDNAs. Four of them were assigned to the CYP4C subfamily, and were closely related to previously isolated crustacean CYP4s while the others were assigned to new CYP4AN and CYP4AP subfamilies.
View Article and Find Full Text PDFPreviously we described the mosquito larvicidal properties of decomposed leaf-litter from deciduous trees, especially the alder Alnus glutinosa (L) Gaertn., due to toxic polyphenols and other secondary compounds. To further examine the biocontrol potential of toxic leaf-litter for mosquito control, feeding rates of third-instar mosquito larvae were assessed for examples of three genera: Anopheles stephensi Liston, Aedes aegypti (L) and Culex pipiens L.
View Article and Find Full Text PDFIn order to examine the factors influencing xenobiotic toxicity against larval mosquitoes, the larvicidal performances of two conventional insecticides (temephos and Bacillus thuringiensis var. israelensis: Bti) and a new potential phyto-insecticide (decomposed leaf litter) were compared under different conditions against three detritivorous larval mosquito types. Bioassays performed under standard conditions indicated differential tolerance levels according to the xenobiotic and the larval type.
View Article and Find Full Text PDFThe relative involvement of larval dietary tolerance to the leaf-litter toxic polyphenols in shaping population genetic structure of the subalpine mosquito Aedes rusticus was examined. This was compared with other parameters such as geographical range, type of vegetation surrounding the breeding site, and occurrence of annual larvicidal treatments. Population genetic structure was analysed at 10 presumed neutral polymorphic isoenzyme loci.
View Article and Find Full Text PDF