Publications by authors named "J C Launay"

The development of ion-sensitive field-effect transistor (ISFET) sensors based on silicon nanowires (SiNW) has recently seen significant progress, due to their many advantages such as compact size, low cost, robustness and real-time portability. However, little work has been done to predict the performance of SiNW-ISFET sensors. The present study focuses on predicting the performance of the silicon nanowire (SiNW)-based ISFET sensor using four machine learning techniques, namely multilayer perceptron (MLP), nonlinear regression (NLR), support vector regression (SVR) and extra tree regression (ETR).

View Article and Find Full Text PDF

Focusing on the ChemFET (chemical field-effect transistor) technology, the development of a multi-microsensor platform for soil analysis is described in this work. Thus, different FET-based microdevices (i.e.

View Article and Find Full Text PDF

The development of ISE-based sensors for the analysis of nitrates in liquid phase is described in this work. Focusing on the tetradodecylammonium nitrate (TDDAN) ion exchanger as well as on fluoropolysiloxane (FPSX) polymer-based layers, electrodeposited matrixes containing double-walled carbon nanotubes (DWCNTs), embedded in either polyethylenedioxythiophene (PEDOT) or polypyrrole (PPy) polymers, ensured improved ion-to-electron transducing layers for NO detection. Thus, FPSX-based pNO-ElecCell microsensors exhibited good detection properties (sensitivity up to 55 mV/pX for NO values ranging from 1 to 5) and acceptable selectivity in the presence of the main interferent anions (Cl, HCO, and SO).

View Article and Find Full Text PDF

Patients with EGFR-mutated non-small cell lung cancer (NSCLC) benefit from treatment with tyrosine kinase inhibitors (TKI) targeting EGFR. Despite improvements in patient care, especially with the 3rd generation TKI osimertinib, disease relapse is observed in all patients. Among the various processes involved in TKI resistance, epithelial-to-mesenchymal transition (EMT) is far from being fully characterized.

View Article and Find Full Text PDF
Article Synopsis
  • * A high-fat diet (HFD) changes how Trp is processed in the body and can lead to inflammation, which might worsen heart problems.
  • * This study shows that controlling Tryptophan metabolism could help reduce gut inflammation and heart disease, leading to new treatment options.
View Article and Find Full Text PDF