An efficient system to collect large numbers of vital zygotes is a pre-requisite for application of zygote genome-editing technology, including development of efficient models for xenotransplantation using pigs. Owing to the sub-optimal in vitro production of zygotes in pigs, efficient collection of in vivo developed zygotes is required. Timing of ovulation is a key factor to sustain efficiency since the interval between pronuclear formation and the first division is very short in pigs.
View Article and Find Full Text PDFGenome editing in pigs has tremendous practical applications for biomedicine. The advent of genome editing technology, with its use of site-specific nucleases-including ZFNs, TALENs, and the CRISPR/Cas9 system-has popularized targeted zygote genome editing via one-step microinjection in several mammalian species. Here, we review methods to optimize the developmental competence of genome-edited porcine embryos and strategies to improve the zygote genome-editing efficiency in pigs.
View Article and Find Full Text PDFEmbryos diagnosed as abnormal in Preimplantation Genetic Diagnosis (PGD) cycles are useful for the establishment of human Embryonic Stem Cells (hESC) lines with genetic disorders. These lines can be helpful for drug screening and for the development of new treatments. Vitrification has proved to be an efficient method to preserve human blastocysts.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
April 2010
We report here the legislative issues related to embryo research and human embryonic stem cell (hESC) research in Spain and the derivation of nine hESC lines at the Center of Regenerative Medicine in Barcelona. You can find the information for obtaining our lines for research purposes at blc@cmrb.eu.
View Article and Find Full Text PDFThe number of human embryonic stem cell (hESC) lines that are available and that are subsequently being used in numerous research projects is increasing steadily. However, there is little coordination of hESC line derivation, and comparative information on the characteristics and quality of these cells is sparse. Obtaining consistent information on hESCs is hampered further by legislative fragmentation, particularly in Europe.
View Article and Find Full Text PDF