Publications by authors named "J C Haigh"

About 5% of patients with cutaneous squamous cell carcinoma (cSCC) have a poor prognosis which is associated with a loss of tumor differentiation, invasion and metastasis, all of which are linked to the process of epithelial-to-mesenchymal plasticity (EMP). Here, we showed that the EMP-associated transcription factor ZEB2 drives cSCC heterogeneity which resembles biphasic carcinosarcoma-like tumors. Single cell RNA sequencing revealed distinct subpopulations ranging from fully epithelial (E) to intermediate (EM) to fully mesenchymal (M), associated with the gradual loss of cell surface markers EPCAM, CDH1, ITGB4, and CD200.

View Article and Find Full Text PDF

Salivary gland cancers (SGC) are rare tumours with limited availability of systemic therapies. Some SGC subtypes overexpress HER2, and this represents a potential therapeutic target, but the evidence base is limited. This study sought to analyse real-world data on the efficacy of HER2-directed therapies in SGC.

View Article and Find Full Text PDF
Article Synopsis
  • Intracellular calcium overload contributes to heart dysfunction, and understanding how to regulate calcium levels could help develop better heart failure therapies.
  • The transcription factor ZEB2, induced by HIF1α in low-oxygen conditions, helps manage genes related to calcium handling and heart contraction, thus protecting against heart issues.
  • ZEB2 enhances calcium uptake by increasing phosphorylation of phospholamban, while also reducing harmful signaling that leads to heart remodeling, making it a key player in maintaining heart function.
View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a diverse malignancy originating from myeloid progenitor cells, with significant genetic and clinical variability. Modern classification systems like those from the World Health Organization (WHO) and European LeukemiaNet use immunophenotyping, molecular genetics, and clinical features to categorize AML subtypes. This classification highlights crucial genetic markers such as FLT3, NPM1 mutations, and MLL-AF9 fusion, which are essential for prognosis and directing targeted therapies.

View Article and Find Full Text PDF

Background: Adult mammalian cardiomyocytes have limited proliferative capacity, but in specifically induced contexts they traverse through cell-cycle reentry, offering the potential for heart regeneration. Endogenous cardiomyocyte proliferation is preceded by cardiomyocyte dedifferentiation (CMDD), wherein adult cardiomyocytes revert to a less matured state that is distinct from the classical myocardial fetal stress gene response associated with heart failure. However, very little is known about CMDD as a defined cardiomyocyte cell state in transition.

View Article and Find Full Text PDF