Publications by authors named "J C Giltay"

Craniotubular Dysplasia Ikegawa type is a sclerosing bone disorder recently identified in five patients from four independent Indian families. It is caused by homozygous or compound heterozygous mutations in TMEM53. Deficient TMEM53 leads to overactive BMP signaling which promotes bone formation.

View Article and Find Full Text PDF
Article Synopsis
  • KMT2C and KMT2D are important enzymes that modify genes, with KMT2C haploinsufficiency recently linked to Kleefstra syndrome 2, a neurodevelopmental disorder (NDD) with unknown clinical details.
  • A study involving 98 individuals found that most pathogenic variants in KMT2C span nearly all its exons, making variant interpretation difficult; the study also established a KMT2C DNA methylation signature for better classification of the disorder.
  • Key features of KMT2C-related NDD include developmental delays, intellectual disabilities, and distinct facial characteristics, setting it apart from similar conditions like Kleefstra and Kabuki syndromes, indicating the need for its renaming and
View Article and Find Full Text PDF

Androgen insensitivity syndrome (AIS) is a difference of sex development (DSD) characterized by different degrees of undervirilization in individuals with a 46,XY karyotype despite normal to high gonadal testosterone production. Classically, AIS is explained by hemizygous mutations in the X-chromosomal androgen receptor (AR) gene. Nevertheless, the majority of individuals with clinically diagnosed AIS do not carry an AR gene mutation.

View Article and Find Full Text PDF

CSMD1 (Cub and Sushi Multiple Domains 1) is a well-recognized regulator of the complement cascade, an important component of the innate immune response. CSMD1 is highly expressed in the central nervous system (CNS) where emergent functions of the complement pathway modulate neural development and synaptic activity. While a genetic risk factor for neuropsychiatric disorders, the role of CSMD1 in neurodevelopmental disorders is unclear.

View Article and Find Full Text PDF

Background: Pathogenic variants in the zinc finger protein coding genes are rare causes of intellectual disability and congenital malformations. Mutations in the gene causing GDACCF syndrome (global developmental delay, absent or hypoplastic corpus callosum, dysmorphic facies; MIM #617260) have been reported in five individuals so far.

Methods: As a result of an international collaboration using GeneMatcher Phenome Central Repository and personal communications, here we describe the clinical and molecular genetic characteristics of 22 previously unreported individuals.

View Article and Find Full Text PDF