Publications by authors named "J C Gevrey"

Wiskott-Aldrich syndrome protein (WASP) and its homologue neural-WASP (N-WASP) are nucleation promoting factors that integrate receptor signaling with actin cytoskeleton rearrangement. While hematopoietic cells express both WASP and N-WASP, WASP deficiency results in altered cell morphology, loss of podosomes and defective chemotaxis. It was determined that cells from a mouse derived monocyte/macrophage cell line and primary cells of myeloid lineage expressed approximately 15-fold higher levels of WASP relative to N-WASP.

View Article and Find Full Text PDF

Podosomes, adhesion structures capable of matrix degradation, have been linked with the ability of cells to perform chemotaxis and invade tissues. Wiskott-Aldrich Syndrome protein (WASp), an effector of the RhoGTPase Cdc42 and a Src family kinase substrate, regulates macrophage podosome formation. In this study, we demonstrate that WASp is active in podosomes by using TIRF-FRET microscopy.

View Article and Find Full Text PDF

A role for Wiskott-Aldrich syndrome protein (WASP) in chemotaxis to various agents has been demonstrated in monocyte-derived cell types. Although WASP has been shown to be activated by multiple mechanisms in vitro, it is unclear how WASP is regulated in vivo. A WASP biosensor (WASPbs), which uses intramolecular fluorescence resonance energy transfer to report WASP activation in vivo, was constructed, and following transfection of macrophages, activation of WASPbs upon treatment with colony-stimulating factor-1 (CSF-1) was detected globally as early as 30 s and remained localized to protrusive regions at later time points.

View Article and Find Full Text PDF

Actin depolymerizing factor (ADF)/cofilin family proteins are key regulators of actin filament turnover and cytoskeleton reorganization. The role of cofilin-1 in cell motility has been demonstrated in several cell types but remained poorly documented in the case of colon cancer. In addition, the putative function of destrin (also known as ADF) had not been explored in this context despite the fact that it is expressed in all colon cancer cell lines examined.

View Article and Find Full Text PDF

Colony-stimulating factor 1 (CSF-1) is an important physiological chemoattractant for macrophages. The mechanisms by which CSF-1 elicits the formation of filamentous actin (F-actin)-rich membrane protrusions and induces macrophage migration are not fully understood. In particular, very little is known regarding the contribution of the different members of the Wiskott-Aldrich Syndrome protein (WASP) family of actin regulators in response to CSF-1.

View Article and Find Full Text PDF