Publications by authors named "J C Garcia-Nieto"

Background And Objective: Gene Regulatory Network (GRN) inference is a fundamental task in biology and medicine, as it enables a deeper understanding of the intricate mechanisms of gene expression present in organisms. This bioinformatics problem has been addressed in the literature through multiple computational approaches. Techniques developed for inferring from expression data have employed Bayesian networks, ordinary differential equations (ODEs), machine learning, information theory measures and neural networks, among others.

View Article and Find Full Text PDF

Gene regulatory networks define the interactions between DNA products and other substances in cells. Increasing knowledge of these networks improves the level of detail with which the processes that trigger different diseases are described and fosters the development of new therapeutic targets. These networks are usually represented by graphs, and the primary sources for their correct construction are usually time series from differential expression data.

View Article and Find Full Text PDF

Explainable Artificial Intelligence (XAI) makes AI understandable to the human user particularly when the model is complex and opaque. Local Interpretable Model-agnostic Explanations (LIME) has an image explainer package that is used to explain deep learning models. The image explainer of LIME needs some parameters to be manually tuned by the expert in advance, including the number of top features to be seen and the number of superpixels in the segmented input image.

View Article and Find Full Text PDF

Background And Objectives: In the last decade, clinical trial management systems have become an essential support tool for data management and analysis in clinical research. However, these clinical tools have design limitations, since they are currently not able to cover the needs of adaptation to the continuous changes in the practice of the trials due to the heterogeneous and dynamic nature of the clinical research data. These systems are usually proprietary solutions provided by vendors for specific tasks.

View Article and Find Full Text PDF

Internet of Things (IoT)-based automation of agricultural events can change the agriculture sector from being static and manual to dynamic and smart, leading to enhanced production with reduced human efforts. Precision Agriculture (PA) along with Wireless Sensor Network (WSN) are the main drivers of automation in the agriculture domain. PA uses specific sensors and software to ensure that the crops receive exactly what they need to optimize productivity and sustainability.

View Article and Find Full Text PDF