Publications by authors named "J C Ganz"

Background: Although most pilocytic astrocytomas grow slowly, their progression in critical sites such as the brainstem or hypothalamus may prove fatal much more rapidly. Cystic progression may be more problematic than solid tumor. Patients with progressive cystic PAs located in eloquent deep areas of the brain are the best candidates for stereotactic radiosurgery.

View Article and Find Full Text PDF

Variation in nuclear size and shape is an important criterion of malignancy for many tumor types; however, categorical estimates by pathologists have poor reproducibility. Measurements of nuclear characteristics can improve reproducibility, but current manual methods are time-consuming. The aim of this study was to explore the limitations of estimates and develop alternative morphometric solutions for canine cutaneous mast cell tumors (ccMCTs).

View Article and Find Full Text PDF

The count of mitotic figures (MFs) observed in hematoxylin and eosin (H&E)-stained slides is an important prognostic marker, as it is a measure for tumor cell proliferation. However, the identification of MFs has a known low inter-rater agreement. In a computer-aided setting, deep learning algorithms can help to mitigate this, but they require large amounts of annotated data for training and validation.

View Article and Find Full Text PDF

Numerous prognostic factors are currently assessed histologically and immunohistochemically in canine mast cell tumors (MCTs) to evaluate clinical behavior. In addition, polymerase chain reaction (PCR) is often performed to detect internal tandem duplication (ITD) mutations in exon 11 of the gene (-11-ITD) to predict the therapeutic response to tyrosine kinase inhibitors. This project aimed at training deep learning models (DLMs) to identify MCTs with -11-ITD solely based on morphology.

View Article and Find Full Text PDF

In numerous studies, deep learning algorithms have proven their potential for the analysis of histopathology images, for example, for revealing the subtypes of tumors or the primary origin of metastases. These models require large datasets for training, which must be anonymized to prevent possible patient identity leaks. This study demonstrates that even relatively simple deep learning algorithms can re-identify patients in large histopathology datasets with substantial accuracy.

View Article and Find Full Text PDF