Publications by authors named "J C GUILLON"

Senescence is a tumor suppressor mechanism triggered by oncogene expression and chemotherapy treatment. It orchestrates a definitive cessation of cell proliferation through the activation of the p53-p21 and p16-Rb pathways, coupled with the compaction of proliferative genes within heterochromatin regions. Some cancer cells have the ability to elude this proliferative arrest but the signaling pathways involved in circumventing senescence remain to be characterized.

View Article and Find Full Text PDF

Herein, we report the design, synthesis, and characterisation of a new library of enantiopure aminoalcohol fluorenes, as well as their in vitro evaluation for biological properties, including activity against two strains of P. falciparum (3D7 and W2) and cytotoxicity on the HepG2 cell line. All tested compounds exhibited good to excellent antimalarial potency with IC values ranging from 0.

View Article and Find Full Text PDF

We identify a senescence restriction point (SeRP) as a critical event for cells to commit to senescence. The SeRP integrates the intensity and duration of oncogenic stress, keeps a memory of previous stresses, and combines oncogenic signals acting on different pathways by modulating chromatin accessibility. Chromatin regions opened upon commitment to senescence are enriched in nucleolar-associated domains, which are gene-poor regions enriched in repeated sequences.

View Article and Find Full Text PDF

The syntheses of novel 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinazolines and 2,4-bis[(substituted-aminomethyl)phenyl]phenylquinolines are reported here in six steps starting from various halogeno-quinazoline-2,4-(1,3)-diones or substituted anilines. The antiproliferative activities of the products were determined in vitro against a panel of breast (MCF-7 and MDA-MB-231), human adherent cervical (HeLa and SiHa), and ovarian (A2780) cell lines. Disubstituted 6- and 7-phenyl-bis(3-dimethylaminopropyl)aminomethylphenyl-quinazolines , , and displayed the most interesting antiproliferative activities against six human cancer cell lines.

View Article and Find Full Text PDF

Pancreatic adenocarcinomas (PDAC) often possess mutations in K-Ras that stimulate the ERK pathway. Aberrantly high ERK activation triggers oncogene-induced senescence, which halts tumor progression. Here we report that low-grade pancreatic intraepithelial neoplasia displays very high levels of phospho-ERK consistent with a senescence response.

View Article and Find Full Text PDF