Publications by authors named "J C GERDES"

This retrospective study assessed anatomical characteristics of cervicomedullary compression in children with achondroplasia. Twelve anatomical parameters were analyzed (foramen magnum diameter and area; myelon area; clivus length; tentorium and occipital angles; brainstem volume outside the posterior fossa; and posterior fossa, cerebellum, supratentorial ventricular system, intracranial cerebrospinal fluid, and fourth ventricle volumes) from sagittal and transversal T1- and T2-weighted magnetic resonance imaging (MRI) scans from 37 children with achondroplasia aged ≤ 4 years (median [range] 0.8 [0.

View Article and Find Full Text PDF

Introduction: Nose-to-brain (N2B) insulin delivery has potential for Alzheimer's disease (AD) therapy. However, clinical implementation has been challenging without methods to follow N2B delivery non-invasively. Positron emission tomography (PET) was applied to measure F-18-labeled insulin ([F]FB-insulin) from intranasal dosing to brain uptake in non-human primates following N2B delivery.

View Article and Find Full Text PDF

The influence of the microstructure on the ionic conductivity and cell performance is a topic of broad scientific interest in solid-state batteries. The current understanding is that interfacial decomposition reactions during cycling induce local strain at the interfaces between solid electrolytes and the anode/cathode, as well as within the electrode composites. Characterizing the effects of internal strain on ion transport is particularly important, given the significant local chemomechanical effects caused by volumetric changes of the active materials during cycling.

View Article and Find Full Text PDF

Synthesis of the acetylcholinesterase inhibitor paraoxon (POX) as a carbon-11 positron emission tomography tracer ([C]POX) and profiling in live rats is reported. Naïve rats intravenously injected with [C]POX showed a rapid decrease in parent tracer to ∼1%, with an increase in radiolabeled serum proteins to 87% and red blood cells (RBCs) to 9%. Protein and RBC leveled over 60 minutes, reflecting covalent modification of proteins by [C]POX.

View Article and Find Full Text PDF

Aliovalent substitution is a common strategy to improve the ionic conductivity of solid electrolytes for solid-state batteries. The substitution of SbS by WS in NaSbWS leads to a very high ionic conductivity of 41 mS cm at room temperature. While pristine NaSbS crystallizes in a tetragonal structure, the substituted NaSbWS crystallizes in a cubic phase at room temperature based on its X-ray diffractogram.

View Article and Find Full Text PDF