Mitochondria play an essential role in the life cycle of eukaryotic cells. However, we still don't know how their ultrastructure, like the cristae of the inner membrane, dynamically evolves to regulate these fundamental functions, in response to external conditions or during interaction with other cell components. Although high-resolution fluorescent microscopy coupled with recently developed innovative probes can reveal this structural organization, their long-term, fast and live 3D imaging remains challenging.
View Article and Find Full Text PDFBackground: Symptomatic postoperative collections (PCs) frequently complicate surgery with significant morbidity and mortality. In contrast with pancreatic inflammatory collections, little is known about endoscopic ultrasound-guided drainage of PCs (EUS-PCD). The aim of this study is to evaluate the safety and efficacy of EUS-PCD using lumen-apposing metal stent (LAMS) as the first-line drainage approach for PCs of any kind.
View Article and Find Full Text PDFThe regulation of mitotic spindle positioning and orientation is central to the morphogenesis of developing embryos and tissues. In many multicellular contexts, cell geometry has been shown to have a major influence on spindle positioning, with spindles that commonly align along the longest cell shape axis. To date, however, we still lack an understanding of how the nature and amplitude of intracellular forces that position, orient, or hold mitotic spindles depend on cell geometry.
View Article and Find Full Text PDFAt the end of cell division, the nuclear envelope reassembles around the decondensing chromosomes. Female meiosis culminates in two consecutive cell divisions of the oocyte, meiosis I and II, which are separated by a brief transition phase known as interkinesis. Due to the absence of chromosome decondensation and the suppression of genome replication during interkinesis, it has been widely assumed that the nuclear envelope does not reassemble between meiosis I and II.
View Article and Find Full Text PDFThe intestinal microbiota is increasingly recognized as a crucial player in the development and maintenance of various chronic conditions, including obesity and associated metabolic diseases. While most research focuses on the fecal microbiota due to its easier accessibility, the small intestine, as a major site for nutrient sensing and absorption, warrants further investigation to determine its microbiota composition and functions. Here, we conducted a clinical research project in 30 age- and sex-matched participants with ( = 15) and without ( = 15) obesity.
View Article and Find Full Text PDF