The formation of oligomers and aggregates of overexpressed or mutant α-synuclein play a role in the degeneration of dopaminergic neurons in Parkinson's disease by causing dysfunction of mitochondria, reflected in their disturbed mobility and production of ROS. The mode of action and mechanisms underlying this mitochondrial impairment is still unclear. We have induced stable expression of wild-type, A30P or A53T α-synuclein in neuronally differentiated SH-SY5Y neuroblastoma cells and studied anterograde and retrograde mitochondrial trafficking in this cell model for Parkinson's disease.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
February 2009
Aims: Previous studies on the therapeutic time window for intravascular administration of bone marrow stem cells (BMSCs) after stroke have shown that early intervention (from 3 h after onset) in the middle cerebral artery occlusion (MCAO) rat model is the most effective approach to reduce ischaemic lesion size. We have confirmed these observations but noticed that 2 weeks after transplantation, almost none of the grafted BMSCs could be detected in or around the lesion. The present experiments aimed to assess the fate and kinetics of intravascularly injected BMSCs shortly after administration in correlation to the development of the ischaemic lesion after MCAO.
View Article and Find Full Text PDFNeuropathol Appl Neurobiol
December 2005
Feeding C57Bl/6 J mice the copper chelator cuprizone leads to selective apoptosis of mature oligodendrocytes and concomitant demyelination predominantly in the corpus callosum. The process of oligodendrocyte apoptosis in this animal model for multiple sclerosis (MS) involves early microglial activation, but no infiltration of T-lymphocytes. Therefore, this model could mimic early stages of oligodendrocyte degeneration Affected oligodendrocytes express the common neurotrophin receptor, p75(NTR), a 'stress-receptor' which under certain circumstances can induce apoptosis.
View Article and Find Full Text PDFEmbryonic mouse neural stem cells (NSCs) were isolated from E14 mice, multiplied in medium containing epidermal growth factor (EGF) and basic fibroblast growth factor (bFGF) and plated in laminin-coated wells in basic serum-free neurobasal medium. After 7 days in vitro, approximately 20% of the embryonic mouse NSCs developed into morphologically and biochemically fully maturated neurons, with extensive dendrites and multiple synaptic contacts. However, even after 22 days of culture, none of these neurons developed voltage-dependent sodium-channels characteristic for a functional neuron.
View Article and Find Full Text PDF