Publications by authors named "J C Carmen"

This study demonstrates the impact of adjuvant on the development of T follicular helper (Tfh) and B cells, and their influence on antibody responses in mice vaccinated with SARS-CoV-2-spike-ferritin-nanoparticle (SpFN) adjuvanted with either Army Liposome Formulation containing QS-21 (SpFN + ALFQ) or Alhydrogel (SpFN + AH). SpFN + ALFQ increased the size and frequency of germinal center (GC) B cells in the vaccine-draining lymph nodes and increased the frequency of antigen-specific naive B cells. A single vaccination with SpFN + ALFQ resulted in a higher frequency of IL-21-producing-spike-specific Tfh and GC B cells in the draining lymph nodes and spleen, S-2P protein-specific IgM and IgG antibodies, and elicitation of robust cross-neutralizing antibodies against SARS-CoV-2 variants as early as day 7, which was enhanced by a second vaccination.

View Article and Find Full Text PDF

The need for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) next-generation vaccines has been highlighted by the rise of variants of concern (VoCs) and the long-term threat of emerging coronaviruses. Here, we design and characterize four categories of engineered nanoparticle immunogens that recapitulate the structural and antigenic properties of the prefusion SARS-CoV-2 spike (S), S1, and receptor-binding domain (RBD). These immunogens induce robust S binding, ACE2 inhibition, and authentic and pseudovirus neutralizing antibodies against SARS-CoV-2.

View Article and Find Full Text PDF

The emergence of variants of concern, some with reduced susceptibility to COVID-19 vaccines underscores consideration for the understanding of vaccine design that optimizes induction of effective cellular and humoral immune responses. We assessed a SARS-CoV-2 spike-ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel or Army Liposome Formulation containing QS-21 (ALFQ) for unique vaccine evoked immune signatures. Recruitment of highly activated multifaceted antigen-presenting cells to the lymph nodes of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific memory CD4 T cells and K spike-(539-546)-specific long-lived memory CD8 T cells with effective cytolytic function and distribution to the lungs.

View Article and Find Full Text PDF

Solid cancers that metastasize to the lungs represent a major therapeutic challenge. Current treatment paradigms for lung metastases consist of radiation therapy, chemotherapies, and surgical resection, but there is no single treatment or combination that is effective for all tumor types. To address this, oncolytic myxoma virus (MYXV) engineered to express human tumor necrosis factor (vMyx-hTNF) was tested after systemic administration in an immunocompetent mouse K7M2-Luc lung metastatic osteosarcoma model.

View Article and Find Full Text PDF
Article Synopsis
  • The need for next-generation SARS-CoV-2 vaccines is driven by the emergence of new variants and long-term coronavirus risks, leading to the creation of four types of engineered nanoparticle immunogens that mimic key parts of the virus.
  • These immunogens successfully stimulated strong antibody responses in mice, with one type, the Spike-ferritin nanoparticle (SpFN), producing significantly higher neutralizing antibody levels after just one shot compared to convalescent serum.
  • Immunizations with SpFN and another type, RBD-Ferritin nanoparticle (RFN), provided protection in mice against lethal SARS-CoV-2 infections and generated potent neutralizing antibodies against
View Article and Find Full Text PDF