Publications by authors named "J C Baglo"

The Mott metal-insulator transition represents one of the most fundamental phenomena in condensed matter physics. Yet, basic tenets of the canonical Brinkman-Rice picture of Mott localization remain to be tested experimentally by quantum oscillation measurements that directly probe the quasiparticle Fermi surface and effective mass. By extending this technique to high pressure, we have examined the metallic state on the threshold of Mott localization in clean, undoped crystals of NiS.

View Article and Find Full Text PDF

Interaction-enhanced carrier masses are central to the phenomenology of iron-based superconductors. Quantum oscillation measurements in the new unconventional superconductor YFe_{2}Ge_{2} resolve all four Fermi surface pockets expected from band structure calculations, which predict an electron pocket in the Brillouin zone corner and three hole pockets enveloping the centers of the top and bottom of the Brillouin zone. Carrier masses reach up to 20 times the bare electron mass and are among the highest ever observed in any iron-based material, accounting for the enhanced heat capacity Sommerfeld coefficient ≃100  mJ/mol K^{2}.

View Article and Find Full Text PDF

The interaction with light weakens the superconducting ground state in classical superconductors. The situation in cuprate superconductors is more complicated: illumination increases the charge carrier density, a photo-induced effect that persists below room temperature. Furthermore, systematic investigations in underdoped YBa2Cu3O(6+x) (YBCO) have shown an enhanced critical temperature Tc.

View Article and Find Full Text PDF