The introduction of pluripotent stem cells into the field of disease modelling resulted in numerous opportunities to study and uncover disease mechanisms in a petri dish. This promising avenue has also been applied to model Marfan syndrome, a disease affecting multiple organ systems, including the skeletal and cardiovascular system. Marfan syndrome is caused by pathogenic variants in , the gene encoding for the extracellular matrix protein fibrillin-1 which ensembles into microfibrils.
View Article and Find Full Text PDFAims: Women with previous gestational diabetes mellitus (GDM) have an increased risk for later development of type 2 diabetes. During pregnancy, GDM affects the cardio-metabolic protein profile; however, it is unknown how GDM affects the cardio-metabolic protein profile in the long term and if it is associated with type 2 diabetes after GDM. We hypothesise that the cardio-metabolic protein profile is affected long term and is associated with the development of type 2 diabetes after GDM.
View Article and Find Full Text PDFContext: Gestational diabetes mellitus (GDM) increases the risk of future type 2 diabetes (T2DM), but effective and feasible interventions to reduce this risk are lacking.
Objective: To evaluate the effectiveness of a family-based health promotion intervention on T2DM risk factors and quality of life among women with recent GDM.
Design: Multicenter, parallel, open-label randomized controlled trial with 2:1 allocation ratio.
Arrhythmogenic cardiomyopathy is a severe genetic heart muscle disease characterized by fibro-fatty replacement of the myocardium. Pathogenic variants causal for this disease are mainly located in desmosomal genes, including desmoplakin (DSP). Renal epithelial cells were isolated from a patient carrying the heterozygous c.
View Article and Find Full Text PDFIntroduction: Despite technological developments and intensified care, pregnancies in women with pre-existing diabetes are still considered high-risk pregnancies. The rate of adverse outcomes in pregnancies affected by diabetes in Denmark is currently unknown, and there is a limited understanding of mechanisms contributing to this elevated risk. To address these gaps, the Danish Diabetes Birth Registry 2 (DDBR2) was established.
View Article and Find Full Text PDF