During their passage through the circulation, red blood cells (RBCs) encounter severe physiological conditions consisting of mechanical stress, oxidative damage and fast changes in ionic and osmotic conditions. In order to survive for 120 days, RBCs adapt to their surroundings by subtle regulation of membrane organization and metabolism. RBC homeostasis depends on interactions between the integral membrane protein band 3 with other membrane and cytoskeletal proteins, and with key enzymes of various metabolic pathways.
View Article and Find Full Text PDFTremor Other Hyperkinet Mov (N Y)
August 2015
The presence of acanthocytes in the blood is characteristic of patients suffering from neuroacanthocytosis (NA). Recent studies have described abnormal phosphorylation of the proteins involved in connecting the membrane and cytoskeleton in patient-derived erythrocytes. The involvement of lipids in the underlying signaling pathways and recent reports on in vitro disease-associated lipid alterations support renewed research into lipid composition, signal transduction, and metabolism in patient erythrocytes.
View Article and Find Full Text PDFBackground: Panthothenate kinase-associated neurodegeneration (PKAN) belongs to a group of hereditary neurodegenerative disorders known as neuroacanthocytosis (NA). This genetically heterogeneous group of diseases is characterized by degeneration of neurons in the basal ganglia and by the presence of deformed red blood cells with thorny protrusions, acanthocytes, in the circulation.
Objective: The goal of our study is to elucidate the molecular mechanisms underlying this aberrant red cell morphology and the corresponding functional consequences.