Publications by authors named "J Buschhaus"

Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network-analyses workflow to identify a comprehensive catalog of contact-induced changes. Conditioned media from MSCs failed to recapitulate genes and proteins, some borrowed and others tumor-intrinsic, induced in cancer cells by direct contact.

View Article and Find Full Text PDF

Patients with triple-negative breast cancer remain at risk for metastatic disease despite treatment. The acquisition of chemoresistance is a major cause of tumor relapse and death, but the mechanisms are far from understood. We have demonstrated that breast cancer cells (BCCs) can engulf mesenchymal stem/stromal cells (MSCs), leading to enhanced dissemination.

View Article and Find Full Text PDF
Article Synopsis
  • Mitochondria generate reactive oxygen species (ROS) that play a role in cell signaling and can influence cancer cell behavior directly through changes in mitochondrial shape (fission and fusion).
  • By promoting mitochondrial fission in triple negative breast cancer (TNBC) cells, researchers observed increased ROS levels, which led to decreased cell migration and reduced formation of structures essential for cell movement.
  • The study highlights that manipulating mitochondrial dynamics and ROS levels could provide new strategies for treating TNBC by hindering cancer cell migration.
View Article and Find Full Text PDF

Estrogen receptor-positive (ER+) breast cancer commonly disseminates to bone marrow, where interactions with mesenchymal stromal cells (MSCs) shape disease trajectory. We modeled these interactions with tumor-MSC co-cultures and used an integrated transcriptome-proteome-network-analyses workflow to identify a comprehensive catalog of contact-induced changes. Conditioned media from MSCs failed to recapitulate genes and proteins, some borrowed and others tumor-intrinsic, induced in cancer cells by direct contact.

View Article and Find Full Text PDF

Unlabelled: Cancer cells reprogram energy metabolism through metabolic plasticity, adapting ATP-generating pathways in response to treatment or microenvironmental changes. Such adaptations enable cancer cells to resist standard therapy. We employed a coculture model of estrogen receptor-positive (ER+) breast cancer and mesenchymal stem cells (MSC) to model interactions of cancer cells with stromal microenvironments.

View Article and Find Full Text PDF