Publications by authors named "J Burrone"

Article Synopsis
  • * This disruption leads to the production of faulty transcripts that are targeted for degradation, resulting in reduced UNC13A protein levels and impaired synaptic transmission.
  • * Using antisense oligonucleotides to specifically target the problematic splicing changes can restore UNC13A protein levels and improve synaptic function, suggesting a new potential treatment strategy for ALS and related disorders.
View Article and Find Full Text PDF

Neurons receive correlated levels of excitation and inhibition, a feature that is important for proper brain function. However, how this relationship between excitatory and inhibitory inputs is established during the dynamic period of circuit wiring remains unexplored. Using multiple techniques, including in utero electroporation, electron microscopy, and electrophysiology, we reveal a tight correlation in the distribution of excitatory and inhibitory synapses along the dendrites of developing CA1 hippocampal neurons.

View Article and Find Full Text PDF

The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques.

View Article and Find Full Text PDF

Dysregulated neuronal excitability is a hallmark of amyotrophic lateral sclerosis (ALS). We sought to investigate how functional changes to the axon initial segment (AIS), the site of action potential generation, could impact neuronal excitability in ALS human induced pluripotent stem cell (hiPSC) motor neurons. We find that early TDP-43 and C9orf72 hiPSC motor neurons show an increase in the length of the AIS and impaired activity-dependent AIS plasticity that is linked to abnormal homeostatic regulation of neuronal activity and intrinsic hyperexcitability.

View Article and Find Full Text PDF

The functional heterogeneity of hippocampal CA3 pyramidal neurons has emerged as a key aspect of circuit function. Here, we explored the effects of long-term cholinergic activity on the functional heterogeneity of CA3 pyramidal neurons in organotypic slices obtained from male rat brains. Application of agonists to either AChRs generally, or mAChRs specifically, induced robust increases in network activity in the low-gamma range.

View Article and Find Full Text PDF