The spatiotemporal features of the "static" receptive field (RF), as revealed with flashing bars or spots, determine other RF properties. We examined how some of these static RF features vary with contrast and contrast adaptation in area V1 of the anesthetized macaque monkey. RFs were mapped with light and dark flashing bars presented at three different contrasts, with the low and medium contrasts eliciting approximately 1/3 and 2/3 of the high-contrast response amplitude.
View Article and Find Full Text PDFWhile it is generally believed that interactions across long distances in the visual field occur only in the higher-order cortical areas, other results suggest that such interactions are processed very early. In the preceding paper, we identified the latencies within a subset of cortical areas in the human visual system. In the present study, we test in which areas and at which latencies the responses to two visual patterns start interacting.
View Article and Find Full Text PDFWe measured the timing of activity in distinct functional areas of the human visual cortex after onset of a visual pattern. This is not possible with visual evoked potentials (VEPs) or magnetic fields alone, and direct combination of functional magnetic resonance imaging (fMRI) with electromagnetic data has turned out to be difficult. We tested a relatively new approach, where both position and orientation of the active cortex was given to the VEP source model.
View Article and Find Full Text PDFIt is commonly assumed that the orientation-selective surround field of neurons in primary visual cortex (V1) is due to interactions provided solely by intrinsic long-range horizontal connections. We review evidence for and against this proposition and conclude that horizontal connections are too slow and cover too little visual field to subserve all the functions of suppressive surrounds of V1 neurons in the macaque monkey. We show that the extent of visual space covered by horizontal connections corresponds to the region of low contrast summation of the receptive field center mechanism.
View Article and Find Full Text PDFDespite the key role played by the dorsal horn of the spinal cord in pain modulation, single-unit recordings have only been performed very rarely in this structure in humans. The authors report the results of a statistical analysis of 64 unit recordings from the human dorsal horn. The recordings were done in three groups of patients: patients with deafferentation pain resulting from brachial plexus avulsion, patients with neuropathic pain resulting from peripheral nerve injury, and patients with pain resulting from disabling spasticity.
View Article and Find Full Text PDF