Publications by authors named "J Buisson"

We evaluated the effect of haptic coordination on anxiety and arousal. Participants looked at a stressful or calming image and then repeatedly squeezed a vibrating stress ball for 20 s. Using a pre-post paradigm with a control group, we showed that squeezing the vibrating ball reduced anxiety and arousal, as assessed by the State-Trait Anxiety Inventory and electrodermal activity, respectively.

View Article and Find Full Text PDF

Mechanical extracellular signals elicit chromatin remodeling via the mechanotransduction pathway, thus determining cellular function. However, the reverse pathway is an open question: does chromatin remodeling shape cells, regulating their adhesion strength? With fluidic force microscopy, we can directly measure the adhesion strength of epithelial cells by driving chromatin compaction to decompaction with chromatin remodelers. We observe that chromatin compaction, induced by performing histone acetyltransferase inhibition or ATP depletion, leads to a reduction in nuclear volume, disrupting actin cytoskeleton and focal adhesion assembly, and ultimately decreases in cell adhesion strength and traction force.

View Article and Find Full Text PDF

The area enclosed by the two-dimensional Brownian motion in the plane was studied by Lévy, who found the characteristic function and probability density of this random variable. For other planar processes, in particular ergodic diffusions described by linear stochastic differential equations (SDEs), only the expected value of the stochastic area is known. Here we calculate the generating function of the stochastic area for linear SDEs, which can be related to the integral of the angular momentum, and extract from the result the large deviation functions characterizing the dominant part of its probability density in the long-time limit, as well as the effective SDE describing how large deviations arise in that limit.

View Article and Find Full Text PDF

We have developed a haptic dynamic clamp dedicated to the regulation of arousal. It takes the form of a vibrating stress ball to be squeezed, called Viball, controlled by Righetti's nonlinear adaptive Hopf oscillator. Participants squeezed an adaptive Viball which adapts its frequency of vibration to the current frequency of human squeezing.

View Article and Find Full Text PDF

Linear diffusions are used to model a large number of stochastic processes in physics, including small mechanical and electrical systems perturbed by thermal noise, as well as Brownian particles controlled by electrical and optical forces. Here we use techniques from large deviation theory to study the statistics of time-integrated functionals of linear diffusions, considering three classes of functionals or observables relevant for nonequilibrium systems which involve linear or quadratic integrals of the state in time. For these, we derive exact results for the scaled cumulant generating function and the rate function, characterizing the fluctuations of observables in the long-time limit, and study in an exact way the set of paths or effective process that underlies these fluctuations.

View Article and Find Full Text PDF