Publications by authors named "J Bruss"

Transcranial magnetic stimulation combined with intracranial local field potential recordings in humans (TMS-iEEG) represents a new method for investigating electrophysiologic effects of TMS with spatiotemporal precision. We applied TMS-iEEG to the dorsolateral prefrontal cortex (dlPFC) in two subjects and demonstrate evoked activity in the subgenual anterior cingulate cortex (sgACC). This study provides direct electrophysiologic evidence that dlPFC TMS, as targeted for depression treatment, can modulate brain activity in the sgACC.

View Article and Find Full Text PDF

The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field.

View Article and Find Full Text PDF

Temporal lobe (TL) epilepsy surgery is an effective treatment option for patients with drug-resistant epilepsy. However, neurosurgery poses a risk for cognitive deficits - up to one third of patients have a decline in naming ability following TL surgery. In this study, we aimed to better understand the neural correlates associated with reduced naming performance after TL surgery, with the goal of informing surgical planning strategies to mitigate the risk of dysnomia.

View Article and Find Full Text PDF

The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field.

View Article and Find Full Text PDF

Approximately 25% of paediatric patients who undergo cerebellar tumour resection develop cerebellar mutism syndrome. Our group recently showed that damage to the cerebellar deep nuclei and superior cerebellar peduncles, which we refer to as the cerebellar outflow pathway, is associated with an increased risk of cerebellar mutism syndrome. Here, we tested whether these findings replicate in an independent cohort.

View Article and Find Full Text PDF